SHA-256
This is a Ruby implentation of the SHA-256 hashing algorithm. Truth be told: It is almost a plain copy of the Wikipedia pseudocode ;)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
# Updated 2011 to work with latest 1.9 (force_encoding) # Helper method class Integer def rotate(n=1) self >> n | self << (32 - n) end end # Input input = gets(nil) || '' if RUBY_VERSION >= '1.9' input = input.force_encoding('US-ASCII') end # Note 1: All variables are unsigned 32 bits and wrap modulo 232 when calculating # Note 2: All constants in this pseudo code are in big endian # Initialize variables # (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): z = 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 # Initialize table of round constants # (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): k = 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 # Pre-processing: # append the bit '1' to the message # append k bits '0', where k is the minimum number >= 0 such that the resulting message # length (in bits) is congruent to 448 (mod 512) # append length of message (before pre-processing), in bits, as 64-bit big-endian integer length = input.length*8 input << 128 input << 0 while input.size%64 != 56 input += [length].pack('Q').reverse # Process the message in successive 512-bit chunks: input.unpack('C*').each_slice(64){|chunk| w = [] chunk.each_slice(4){|a,b,c,d| w << (((a<<8|b)<<8|c)<<8|d) } # Extend the sixteen 32-bit words into sixty-four 32-bit words: (16..63).map{|i| s0 = w[i-15].rotate(7) ^ w[i-15].rotate(18) ^ (w[i-15] >> 3) s1 = w[i-2].rotate(17) ^ w[i-2].rotate(19) ^ (w[i-2] >> 10) w[i] = w[i-16] + s0 + w[i-7] + s1 & 0xffffffff } # Initialize hash value for this chunk: a,b,c,d,e,f,g,h = z # Main loop: (0..63).each{|i| s0 = a.rotate(2) ^ a.rotate(13) ^ a.rotate(22) maj = (a & b) ^ (a & c) ^ (b & c) t2 = s0 + maj & 0xffffffff s1 = e.rotate(6) ^ e.rotate(11) ^ e.rotate(25) ch = (e & f) ^ ((~e) & g) t1 = h + s1 + ch + k[i] + w[i] & 0xffffffff h = g g = f f = e e = d + t1 & 0xffffffff d = c c = b b = a a = t1 + t2 & 0xffffffff } # Add this chunk's hash to result so far: z[0] = z[0] + a & 0xffffffff z[1] = z[1] + b & 0xffffffff z[2] = z[2] + c & 0xffffffff z[3] = z[3] + d & 0xffffffff z[4] = z[4] + e & 0xffffffff z[5] = z[5] + f & 0xffffffff z[6] = z[6] + g & 0xffffffff z[7] = z[7] + h & 0xffffffff } # Produce the final hash value (big-endian) hash = '%.8x'*8 % z # Output puts hash
Jul | April 29, 2010
Isn't this the wrong endianness for you, then or did you really want to target big endian machines?
J-_-L | April 29, 2010
Hm.. it works on my machine... which is, of course, little endian. As I said, I didn't change the algorithm (https://en.wikipedia.org/wiki/SHA-256#SHA-256_.28a_SHA-2_variant.29_pseudocode) itself, which does the last step in big endian.